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A computational method for the flow through 
non-uniform gauzes : the general two-dimensional case 

By J. T. TURNER 
Simon Engineering Laboratories, University of Manchester 

(Received 9 May 1968) 

A computational method is presented for the analysis of two-dimensional flow 
through a non-uniform gauze. The method, based upon the linearized theory 
due to Elder (1959), permits solutions for most practical cases to be obtained 
using relatively simple numerical techniques. Comparison with experimental 
data shows that the computed solutions are satisfactory provided the restrictions 
inherent in the linearized theory are observed. 

Introduction 
Experimentally, the generation of a particular velocity distribution in a ducted 

flow is a problem of some interest. Several methods are available, which use the 
pressure loss associated with bluff bodies or wire grids, for example, to redistribute 
the upstream flow and thereby produce the desired velocity distribution down- 
stream. When consideration is given to a particular method, ease of design and 
the magnitude of the disturbance suffered by the flow are the relevant factors 
(Livesey, Turner & Glasspoole 1966). These requirements, and the advantages 
offered by a semi-theoretical approach, will generally eliminate the cruder em- 
pirical methods. Thus attention is concentrated upon techniques which employ 
grids of parallel circular rods or wire gauzes with non-uniform physical properties. 
Conveniently, the term ‘gauze) may also be applied to  an array of parallel rods. 

The influence of a non-uniform gauze on a two-dimensional flow has been 
discussed several times in the literature. The earliest analysis due to Owen & 
Ziekiewicz (1957), results in an expression for the spacing of a circular rod array, 
graded to produce a linear shear distribution. A constant velocity distribution 
is assumedupstream of the grid. Subsequently, Livesey & Turner (1964) extended 
the method to cover the generation of a symmetrical linear shear profile; for 
many practical situations this symmetry is desirable. 

Probably the most complete work on the subject is that due to Elder (1959) 
who derived a linear relationship between the non-uniform gauze properties and 
the velocity distributions in the upstream and downstream flows. The result due 
to Owen & Zienkiewicz (1957) is shown to be a special case of this linearized 
theory. Close agreement with experiment was obtained for a plane inclined gauze 
and a parabolic gauze shape. The inverse problem, to produce a specified down- 
stream distribution of velocity using a shaped gauze with uniform properties, 
was not checked experimentally. Although the theory given by Elder is perfectly 
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general and covers all aspects of the problem, the analytical complexity is con- 
siderable even for carefully chosen problems. This is undoubtedly the reason 
why the method has not found a wider acceptance in experimental work. 

McCarthy (1 964) considered the case of moderately sheared three-dimensional 
flow past a plane normal gauze of arbitrary resistance distribution in a duct of 
arbitrary (although constant) cross section. The analysis, in certain respects, 
represents an extension of that due to Elder, since no restriction is placed on the 
resistance variation across the grid or on velocity variations across the duct. 
A relatively simple numerical calculation procedure is presented and the method 
is verified experimentally. 

Examination of the literature therefore indicates that the analysis due to 
Elder is the most satisfactory. The theory derived by McCarthy, although more 
suitable for the analysis of highly sheared flows, is not applicable to gauzes of 
arbitrary shape or to non-uniform upstream flow distributions, 

It was felt desirable that some attempt should be made to produce a more 
easily used method of analysis and yet retain the generality offered by Elder’s 
method. Accordingly, numerical methods of solution have been developed which 
are suitable for digital computation. These use the basic analytical relationships 
derived by Elder but solve the problem by means of simple iterative techniques. 
Hence, any two-dimensional flow through a non-uniform gauze becomes amen- 
able to analysis. Several problems are analyzed using the numerical methods 
and the results are found to be in satisfactory agreement with experiment. 

Basic analysi s 
Initially, it appears worthwhile to re-state the main steps in the analysis of 

the general two-dimensional problem, as originally propounded by Elder ( 1959). 
Certain minor changes to the notation are made in order to clarify particular 
features. 

In  the ideal model considered, the gauze is replaced by a surface across which 
a discontinuity in the pressure and velocity distributions of the flow will occur. 
The fluid must satisfy continuity and also obey certain conditions at the gauze 
which may be specified in terms of geometrical and empirical parameters. 

Gauze parameters 
(i) Loss coeflicient 

The gauze loss coefficient K is defined by the expression 

AP = W P V 3 ,  
where qv is the local velocity component (in the upstream flow) normal to the 
gauze surface, p the fluid density and Ap the static pressure loss across the gauze. 
The loss coefficient depends on the gauze geometry and the interstitial velocity 
of the flow. 

Defining the fractional open area/? as the ratio of the free to the total gauze area 

or 
P = (1 - (d/Z)}2 

P = (1 - (d/Z)} 

for a square mesh gauze, 
for a grid of parallel rods, 
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where d represents the wire diameter, and 1 is the wire spacing. Elder (1959) 
assumed the approximate expression 

K = ((1 --P)/PIZ. ( 1 4  
McCarthy ( 1964), however, has suggested the relationship 

where the constant C, is found to depend on the Reynolds number of the 
flow through the gauze, based upon the interstitial velocity udlpv .  A value of 
C, = 0.78 was chosen as the most satisfactory based on the experimental evidence. 
This expression (1 a)  is similar to that adopted by Owen & Zienkiewicz (1957). 

A third relationship, obtained by Annand (1953), is 

K = {C,P -P2))/P2, ( 1 4  
where the constant C, is close to 0-71 for a Reynolds number e d / v  of 100. 

These empirical relationships are conflicting and lead to significantly different 
values of the loss coefficient. For the present purpose, however, it  is assumed that 
the value of K can be determined accurately. 

(ii) Lift coeficient 

The gauze will, in general, experience a lift force normal to the flow direction so 
that there is a change in the tangential velocity component across the gauze. 
Thus the gauze lift coefficient may be defined as 

where V ,  denotes the velocity component tangential to the gauze and suffices 1 , 2  
represent upstream and downstream conditions respectively. For the present 
purpose, we may take B as a constant, in the range 0-1, dependent only on the 
physical gauze properties but independent of the inclination of the flow to the 
gauze. 

It will be found that there are alternative empirical relationships for the lift 
coefficient in the literature. Elder (1959) showed 

B = d/ l .  (2a)  
McCarthy (1964) defined a refraction coefficient a such that a = &,/GI. Based 
on the results of Spangenberg, the empirical relationship found is 

a = 1*1/2/(1+K) 

and hence B = l - l . l / J ( l + K ) .  ( 2 b )  

Expression ( Z b )  is identical to that used by Owen & Zienkiewicz (1957) and 
appears to be rather more firmly based on experimental data than the alternative 
relationship. 

Assuming the value of the loss coefficient is accurate, equations ( 2 a )  and ( 2 b )  
can lead to very different values for the lift coefficient. Such discrepancies are 
important in the problems to be analyzed subsequently and thus particular care 
will be needed when evaluating this parameter. 

24 Fluid Mech. 36 



370 J .  T. Turner 

The equation of motion for the flow through the gauze 
Ideal two-dimensional flow along a parallel-walled channel is considered. The 

gauze occupies the range 0 < y < L close to the plane z = 0 and the streamlines 
in the flow far from the gauze are assumed parallel to the walls. The model is 
shown schematically in figure 1. 

Upstream velocity Non-uniform Downstream 
distribution gauze of velocity distribution 

arbitrary shape 
and resistance 
variation 

FIGURE 1. The general problem of two-dimensional flow through a non-uniform gauze. 

The equation relating the velocity changes to the gauze properties may be 

(3) 
written as 

In this expression, u = urnllB and U* = u o o , l ~  are the non-dimensional velocities, 
distant from the plane of the gauze, in the upstream and downstream flow re- 
spectively. At the gauze surface, q = al/ v is the local flow velocity and the effec- 
tive loss coefficient y ,  which depends not only on the loss coefficient K but also 
on the angle between the gauze normal and the flow direction 8, is written as 

u-u* = yo(q-l)+*yos. 

= KCosv. (4a) 

On the assumption that the angle 0 and variation in resistance across the gauze 
are both small, the right-hand side of (4a) may be linearized to the form 

Y = Yoyo(l+s)* (4b) 

Continuity requires that sdy = 0. To satisfy the assumptions in (4)) it will be 

necessary to restrict the velocity shear and the inclination of the flow to the gauze. 
Thus, L(da/dy) or L(du*/dy) < 0.5 and 8 < 45 approximately. 

Considering that the gauze produces a perturbation $* to the main flow 
stream function $o, then the resultant stream function is 

l o L  

1L- = $O+$*. 
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Assuming small transverse streamline displacement, the perturbation satisfies 
the Laplace equation 

which has a solution 
V2$* = 0, 

In  (5), P, and &, are Fourier constants, x and y are the orthogonal co-ordinates 
and L is the channel height. 

Assuming that the gauze is nearly coincident with the plane x = 0, the veloci- 
ties given by the stream function $* must satisfy continuity, so that 

m m 

q = u-  C Pncosno = u*- C Q,cosno, (6) 
n= 1 n= 1 

where o = ny/L is a non-dimensional height parameter. 
Hence the problem reduces after some manipulation of the algebra to the solu- 

tion of the equations 
u-u* = yo(q-l)++y,e, 

00 

$yes +yo(u- 1) = Z p,sinnw, 

BtanO = C ansinnu, 

n=l 
m 

n= 1 

in which P,, Q, are replaced by 

Substitution for q from (6) and elimination of the constants P,, &, reduces (7) to 
03 

u*-1 = A(u-l)-+(l-A)s+E I: a,cosno, (11)  
n= 1 

where 

In  this equation, the final term presents a difficulty since the constants a, are 
not easily evaluated. Elder was able to overcome the problem by introducing 
a type of transformation. If two functions g(w),  g*(w) are defined in the range 
0 < o 6 n and are such that 

W 

g ( w )  = ansinno, 
n = l  

m 

n = l  
g*(o) = cx,cosnw, 

24-2 



372 J .  T. Turner 

then there is a transformation which satisfies 

g ( 4  = H*[g*(o)l, 

g*@) = H[g(w)l* 
This transformation is a statement of a particular relationship between a Fourier 
sine series and its conjugate cosine series (Jeffreys & Jeffreys 1950, p. 431, etc.). 

Hence, (9) and (1 1)  yield 

u*- 1 = A(u-1)-*(1-A)s+E.H[Btan8].  ( 12) 
This is a linear relationship between the flow and the gauze properties. The first 
term on the right-hand side represents the attenuation of an upstream flow 
variation by a uniform (plane, constant property) gauze normal to the flow, the 
second term describes the effect of resistance coefficient variation and the final 
term depends on the inclination of the gauze, Rearranging the equation, and 
using the transformation if necessary, gives any one variable in terms of the 
other four. 

Two cases will be of practical interest: the shaped gauze of uniform resistance, 
and the plane normal gauze of non-uniform resistance. Either case may be related 
to a specified change in velocity distribution across the gauze. In  the former 
problem, (12) is written as 

Btan8  = H*[{(u* -u)/E}+ (2 -B)  (u- 1) + 3 2  -23) s], (13) 

which after insertion of the various terms into the bracketed section to  form 

g*(w) = C Cc,cosnw 
m 

n= 1 

and application of the transformation to produce 

g ( w )  = C ansinno 

yields the gauze inclination 8 as a function of y. Finally, the gauze shape is 
determined as 

m 

n= 1 

x - z 0  = tan8dy. (14) 1: 
Alternatively, where a plane gauze is considered, (12) reduces to 

which expresses the required resistance variation in terms of the specified change 
in velocity distribution across the gauze. 

Equations (12), (13) completely describe two-dimensional channel flow through 
a non-uniform gauze. Elder was able to obtain analytical solutions to certain 
well-chosen problems in which one or other of the terms vanished. The purpose 
of this paper is to show that in fact these equations may be solved quite generally 
using simple numerical techniques. Thus most experimental situations become 
amenable to analysis. 
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Computation procedure and experimental evaluation 
Numerical solutions have been obtained using the Manchester University 

Atlas Computer. The methods adopted will be discussed briefly, making com- 
parison with experiment where this is possible. 

It is convenient to consider two distinct types of problem. Thus, it will be 
required to determine either ( i )  the velocity distribution downstream of a non- 
uniform gauze with a specified upstream velocity distribution, see (12)) or (ii) the 
shape of the uniform gauze, or the resistance grading of a wire grid, which will 
produce a desired downstream velocity distribution from a given upstream 
distribution, see (13)) (15). 

T y p e  (i). The effect of a non-uniform gauze o n  a velocity distribution 
The basic steps in the calculation of the downstream velocity distribution u* for 
a given distribution u and variation in gauze properties (inclination 0, loss co- 
efficient K and lift coefficient B )  are briefly the following: (a)  compute the varia- 
tion of gauze properties, using (1 a) ,  (1 b) ,  (2a ) ,  (2  b)  where necessary, and the 
geometry of the gauze; (b )  specify the upstream velocity variation (u) at discrete 
values of the height parameter ( w ) ;  ( c )  determine the gauze constants yo, s(w),  
A ,  E ;  ( d )  express the function B tan 8 as a Fourier series and determine the Fourier 

-3.0 -2.0 -1.0 0 1.0 2.0 3.0 
u*- 1 

EB tan 8 

FIGURE 2. The influence of a plane inclined gauze on a uniform and a quarter power 
law velocity distribution. - - - x - - -, symmetrical quarter power velocity distribution 
upstream, K = 1.00, 8 = 45". 
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FIGURE 3. Gauze parameters associated with the influence of a plane inclined gauze on 
a non-uniform velocity distribution. A, 15" ; x , 30' ; 0 ,  45". 

coefficients a,. Hence evaluate the transformation using these coefficients; 
( e )  compute the value of the right-hand side of (12) at each value of w .  This 
corresponds to the required downstream velocity distribution. 

Two problems have been investigated in this way and will now be discussed. 
A plane gauze inclined to the upstream $ow. Computer solutions have been 

obtained for the velocity distribution downstream of a plane inclined gauze with 
both uniform and power law velocity distribution upstream, see figure 2. The 
computed velocity distributions for a uniform upstream flow were identical 
with the analytical results of Elder. Hence, agreement is found with Elder's 
experimental values, obtained with a negligibly small wall boundary-layer 
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thickness. Using ( I  2), the effect of non-uniformities in the upstream velocity 
distribution on the downstream distribution can be computed with relative ease. 
Figure 3, which shows the variation of the plane gauze constants A ,  E,  A/EB tan 0 
versus the loss coefficient K ,  may be used in conjunction with the information 
in figure 2. If the experimental upstream distribution (u- 1 )  is expressed as a 
discrete function of o, the correction to the downstream distribution (u* - 1) 
can be calculated. 

Parabolic gauze shape. The effect of a parabolic shaped gauze with a constant 
loss coefficient was analyzed by Elder. Unfortunately two printing errors appear 
in the original paper (pp. 366 and 367) which lead to some difficulty. 

1.0 

0.8 

5 0.6 
;J, 

0.4 

0.2 

0.0 . .  
- 1.0 0 1.0 2.0 

(u* - 1) or @(u* - 1 - Au) 

FIGURE 4. The effect of a pmabolic gauze on a uniform velocity distribution. Gauze shape 
( y -L /2 )*  = (A/&) ( k L - 2 ) .  Curves of (w*- 1): --- , k  = 0.30,K = 1 0 * 0 ; - - - - - - - - ,  
k = 0.26, K = 4.0; - - - - - - , k = 0.37, K = 4.0. - X -, &(u* - 1 - A W ) .  

Considering the gauze of shape 
(y - +L)2 = L(kL - x)/4k, 

then the gauze shape correction term should be modified to 
Au = +( 1 - A )  (1 - 4k cos2 8/tar14k) 

in the analytical expression for the downstream velocity distribution 
- 8  (u*-1)-Au =- kEBlog(2sinw). 

Secondly, the axis in Elder’s figure 5 must be re-labelled in(u* - 1 - Au)/EEB. 
7T 
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With these two corrections, the numerical solution was identical with the 
analytical solution already obtained by Elder and therefore agrees with the 
experimental results, see figure 4. Similar corrections for non-uniformity in the 
upstream velocity distribution to those discussed previously could be made. The 
determination of the gauze constants A and E is rather more difficult in this case 
where the gauze inclination changes with position but may be accomplished 
by numerical integration. 

Type (ii). The required gauze shape for a given change in velocity distribution 
In this type of problem, it is necessary to repeat the whole calculation of the 
gauze shape several times using an iterative procedure, since the variable s and 
therefore yo, A ,  E are functions of the inclination. The iterative procedure is 
basically as follows: (a)  assume that yo = K so that initial approximations to 
the gauze parameters A and E may be computed. At this stage, the resistance 
variation term s(w) in (13) is taken as zero; (b)  choose a suitable interval for w ,  at 
least 50 steps in the present work, and evaluate the bracketed term on the right- 
hand side of (13). This function of the velocity distributions and the resistance 
variation is denoted by G,(w); (c)  to produce the transformation H*[g*(w)], the 

function G I ( @ )  is expressed as a Fourier cosine series, thus G,(w) = a, cos nw 

and the coefficients an are evaluated. The required transformation is simply the 

N 

n=l 

N 
Fourier sine series G2(w) = 2 a, sin nw obtained using the same coefficients a,. 

n=l 
The number of terms needed ( N )  has generally been found to lie between 15 
and 30; ( d )  the gauze inclination 0 may now be calculated as a function of height, 
using tan 0 = G,(w)/B;  ( e )  integrating cos2 0 across the gauze height permits the 
calculation of a more accurate value for the gauze constant yo, and of a value for 
the resistance variation s(w).  The complete calculation, starting at (b) ,  is now 
repeated until there is no significant change in yo or s(w). Generally the number of 
iterations has been found to lie between 10 and 30; (f) the required gauze shape 
is computed by the integration of tan0 = dxldy across the duct height. 

This particular method, for which the whole calculation must be repeated 
several times, has been used to compute the gauze shape necessary for the pro- 
duction of a linear shear velocity distribution. The second example quoted, that 
in which the required downstream distribution is produced by a grid formed by 
an array of parallel rods, illustrates a rather different method of solution in which 
the inclination 0 is zero and some simplification of the problem occurs. 

Production of a linear shear velocity distribution using a shaped gauze. Consider 
the linear shear velocity distribution 

u* - 1 = h{(y/L) - i}, 
which is to be produced by a shaped gauze with constant properties. The problem 
may be tackled numerically: figure 5 shows the computed gauze shapes corre- 
sponding to a range of the velocity shear parameter h and loss coefficient K .  The 
effect of choosing equation (2 b)  instead of (2 a )  when calculating the lift coefficient 
B, is shown for one particular case K = 6.0, h = 0.8, otherwise equation ( 2 a )  is 
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used throughout. As mentioned earlier, errors in the lift coefficient are especially 
important in this type of problem since the gauze shape is determined by the 
rapidly varying function B tan 8. 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 
3 2  

0.4 

0.3 

0.2 

0.1 

0 

nx/L 

FIGURE 5. The uniform gauze shape to produce a h e a r  shear velocity distribution: 

0, K = 6.0, h = 0.8; +, K = 2.5, h = 0.35; A, K = 4.2, h = 0.5 (see Lau & Baines 
u*-1 = h(y /L-4) .  Lift coefficient: - , B = 1 - 1/J(1 + J K ) .  x , K = 4.0, h = 0.8; 

(1968)). -- 0--,  B = l - l*l /J( l+K).  

It will be obvious that the computed shapes are very different from those 
derived analytically by Elder, particularly close to the walls where the plane 
inclined gauze requires the most correction. It is found that the computed gauze 
shape is practically unchanged if the resistance variation term s(w)  is neglected, 
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as in Elder's analysis, so that an error in the evaluation of the transformation 
H*[g*(w)]  is indicated. In regard to this discrepancy, it has come to the author's 
attention that Lau & Baines (1968) have independently obtained agreement 
with the numerical work presented here. They have also discussed the reason 
for the error in the analytical solution due to Elder. 

In order to test the numerical solution, a shaped gauze ( K  = 2.5, h = 0.35) 
was installed in a wind tunnel with a 5 in. square cross-section so as to produce 
a vertical linear shear velocity distribution. Conveniently, the background turbu- 
lence level in this tunnel is relatively low. Considerable difficulty was experienced 
in the manufacture of this shaped gauze-eventually, the problem was overcome 
by soldering the gauze to vertical formers attached to the side walls and fixing 
the top and bottom edges of the gauze in slots machined in the horizontal walls 
of the tunnel. Only a small amount of side tension was applied. 

"T - -  

Non-dimensionalizd 
downstream 
velocity distribution 
- ( U * - 1 )  

0.0 0.2 0.4 0.6 0.8 1.0 

Vertical position N (;y/L) 

FIQURE 6. The production of a linear shear velocity distribution using a shaped gauze with 
uniform properties. -, u* - 1 = 0.35{(y/L)  - t}.  Measured value: x , a t  3$ in.; 
0 ,  at 7: in. 

Measurements of the local total pressure and wall static pressure were obtained 
at 34 in. and 79 in. downstream from the leading edge of the gauze (corresponding 
to the minimum velocity in the downstream flow). These results are compared 
with the theoretical distribution in figure 6. Despite the scatter ( 5  % approx.), 
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the data is essentially linear. Departures from the theoretical distribution may 
be attributed to ( a )  small unavoidable ripples in the gauze shape which produced 
the discrepancies to be observed at  y/L = 0.26 and 0.7, typically the ripple size 
was less than 0.002 inch, and (b )  the wall boundary layers which modify (13) 
close to the walls. 

Corrections for the non-uniformity in the flow upstream of the gauze could be 
computed if required although this has not been attempted in the present work. 
The corrections are basically the same as those considered for the plane inclined 
gauze. 

The spacing distribution for a wire grid. One of the standard methods of velocity 
profile generation uses a grid of parallel rods with variable spacing. In the original 
work, Owen & Zienkiewicz (1957) derived the theoretical spacing to produce 
a linear shear velocity distribution. Subsequently, Cockrell & Lee (1966) extended 
the method t o  produce a power law distribution downstream of the grid. In  both 
cases, the upstream flow was necessarily assumed to be uniform. 

Using numerical techniques, the more general problem, in which the upstream 
velocity varies over the duct, can be investigated. The required spacing distribu- 
tion may be obtained readily as the solution of a quadratic function. 

The required resistance grading is 
s = (2/( 1 - A ) }  [A(u - 1) - (u* - l)]. (16) 

Following Owen & Zienkiewicz, the resistance coefficient K is linearized and A 
can be determined. 

Thus 2 - KO - B + KOB K = K o ( l + s )  and A =  
2+Ko-B ' 

The drag coefficient for each rod based on interstitial velocity is assumed to 
equal 1.0 (use of McCarthy's value of 0.78 modifies the subsequent analysis only 
slightly) and hence it can be shown that 

a where 6 = -. 5 KO( 1 + s) = ___- 
(1 - El2 1 

Substitution in (15) yields 

Solution of this quadratic then gives the required variation in wire spacing. 
Thus 

where we define 
x=Ko(l+(i-A)[A(u-l)-(u*-l)l]. 2 

The negative square root is taken since the distance between adjacent rods is 
finite (0 < 5 < 1). 

In  fact, the equation solved by Cockrell & Lee (1966) differs from (17) due to 
the choice of the resistance coefficient expression. Following Elder they used 
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Substitution into (15) and solution by the quadratic formula leads to the wire - 

spacing distribution 
- - (Ko+Y)+Vwo+Y) 

1-(Ko+Y)  1 

where Y =  (;:I) __ [A(u-  1) - (u" - l)]. 

For this particular case, only the positive square root is applicable since physically 
0 6 5 6 1 for the rod array. 

In  addition to the different expressions for the loss coefficient variation, there 
is some uncertainty in the choice of the correct expression for the lift coeEcient. 
Thus Owen & Zienkiewicz originally used expression ( 2 b )  whereas Cockrell & 
Lee adopted the relationship derived by Elder, (2a). 

It is noteworthy that, for the special case of a square mesh gauze, (2u) is 
equivalent to the expression 

since ,8 = (1 - (d/Z)}2, provided that we assume 

B = 1 - 1/4( 1 + J K ) ,  ( 2 4  

For an array of parallel cylinders, /3 = (1 - (d/Z)} and equations ( l a ) ,  (2a) ,  ( 2 c )  
are not compatible. 

The variations in the value of B, corresponding to the different relationships 
available, lead to changes in the constant A .  The resultant changes in the 
spacing distribution are however found to be relatively small. Typically, the 
changes are less than 2 %  in for y /L  < 0.8 and less than 5 yo for y/L>O.8. 
Changes of this order are practically insignificant. 

In contrast to these small variations, the alternative expressions for the effec- 
tive resistance coefficient of the grid ((16) or (19)), lead to very different results 
for the calculated grid spacing distribution. Figure 7 illustrates this for the cases 
of the production of a uniform shear and a one-seventh power law velocity 
distribution, starting with a constant upstream velocity. 

Since only one expression can be correct, the good agreement obtained by 
different workers between theory and experiment is surprising. However, it is 
found that changes in the value of the assumed loss coefficient will reduce (but 
not eliminate) the disparity between the alternative spacing distributions; see 
figure 7 in the case of the one-seventh power law. It seems probable that the 
assumed (i.e. theoretical) and the experimental KO values were not necessarily 
of equal value. It is suggested that this discrepancy could have been overlooked 
previously since the downstream velocity distribution, rather than the pressure 
loss across the grid, would have the primary importance. 

A careful examination of the experimental power law velocity distributions 
produced by Cockrell & Lee (1966) shows that their 0.143 (+) distribution is 
fitted rather more closely by a 0.175 ( 1 / 5 7 )  law. Employing this modified power 
law index and choosing a value of 1.00 (instead of the 0.4 assumed), it is found 
that (16) leads to spacing distributions which are practically identical with those 
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YIL 

on the computed spacing distribution of a grid. - , Ko(l+t?) = [ / ( l - E ) Z ,  B = 
FIGURE 7. The influence of the alternative expressions for the resistance coefficient 

l - l . l /d ( l+Ko) ;  -----, K,(l+s) = [2/(l-[)2,B = 6. Curves numbered: l ,Ko = 1.0; 
2, KO = 2.0. ( A ) ,  power law, u* = $(y/L)$; (B), linear shear, u*- 1 = O.S{(g-y/L)). 

given by Cockrell & Leecurves  4 and 2 in figure 8. In  fact, a straight line 
approximation to the spacing distribution was used in these experiments so that 
the actual spacing distribution was perhaps even nearer to curve 4 than the 6 
values calculated by Cockrell & Lee would suggest. With the modified value of 
the power law index (5.7 not 7-0) such close agreement could not be obtained 
using the alternative equation (19), curves 1 and 3 in figure 8 with K O  values of 
0.45 and 0.50. 

The choice between the two expressions (16) or (19) need not be entirely 
arbitrary. The available evidence based on the work of Owen & Zienkiewicz 
(1957), McCarthy (1964) and on this present re-analysis of the results of Cockrell 
& Lee (1966) suggests that (16), possibly modified by the constant factor 0.78, 
is the more correct. 

It is therefore suggested that (18) should be employed for grid design. Since 
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Power law: u* = {(n+ 1)/n) (y/L)1'". - , K,(l+s) = [/(1-[)2, B = l - l - l / ~ ( l + K o ) ;  
FIGURE 8. -4 re-analysis of the grid spacing distribution tested by Cockrell & Lee (1966). 

_ _ _ _ _ _  , KO( 1 + s) = ["I( 1 - [)2, 3 = 5. x , values calculated by Cockrell & Lee, n = 7, 
KO = 0-4. Curve no.: 1, n = 5.7, KO = 0.45; 2, n = 7-0, KO = 0.40; 3, n = 5.7, KO = 0.50; 
4, n = 5.7, KO = 1.00. 

the value of the constant A is small for practicable values of the loss coefficient KO, 
the effect of any non-uniformity in the upstream flow will usually be small. 

The numerical method of solution is seen to be easily adapted to any particular 
experimental problem. The spacing of an array of parallel rods (i.e. the wire grid) 
has been analyzed in rather more detail than the other types of gauze problem 
because, in two-dimensional flows at least, this method is more convenient 
experimentally than the bending of an accurate gauze shape. However, for other 
situations, and particularly in axisymmetric flows, the use of shaped uniform 
gauzes appears to offer certain advantages. For this reason the considerable 
complications of the axisymmetric problem are currently being investigated. 

Conclusion 
A computational method has been presented for the analysis of the two- 

dimensional flow through a non-uniform gauze of arbitrary shape. The method is 
applicable t o  the most general, and therefore analytically difficult, practical 
cases. 
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The various types of problem may be solved using relatively simple numerical 
techniques which are easily programmed onto a digital computer and good 
agreement has been obtained between experiment and the computed results. In 
particular, the computed shape of the uniform gauze needed to produce a linear 
downstream velocity distribution has been tested by experiment since, in this 
one case, there is disagreement with the results presented by Elder. The solution 
obtained numerically is shown to be correct although the experimental results 
are of rather poor quality. 

The author wishes to express his sincere thanks to Dr P. H. Price for help with 
the analysis and Mr S. Bates and Mr J. Toft for constructing the experimental 
apparatus. He is also very grateful to Dr D. J. Cockrell and Mr B. E. Lee for 
making their experimental results available for further analysis. 
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